Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.
نویسندگان
چکیده
Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.
منابع مشابه
Enhanced Hydrogen Production in Escherichia Coli through Chemical Mutagenesis, Gene Deletion, and Transposon Mutagenesis
Enhanced Hydrogen Production in Escherichia coli Through Chemical Mutagenesis, Gene Deletion, and Transposon Mutagenesis. (May 2010) Andrea Juliana Garzon Sanabria, B.S., Universidad Industrial de Santander at Bucaramanga Chair of Advisory Committee: Dr. Thomas K. Wood We demonstrate that hydrogen production can be increased by random mutagenesis using N-methyl-N ́-nitro-N-nitrosoguanidine (MNNG...
متن کاملEfficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli
Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO2 to formate is to use chemical catalysts in homogeneous or heterogeneous reacti...
متن کاملActivation of formate hydrogen-lyase via expression of uptake [NiFe]-hydrogenase in Escherichia coli BL21(DE3)
BACKGROUND Several recent studies have reported successful hydrogen (H2) production achieved via recombinant expression of uptake [NiFe]-hydrogenases from Hydrogenovibrio marinus, Rhodobacter sphaeroides, and Escherichia coli (hydrogenase-1) in E. coli BL21(DE3), a strain that lacks H2-evolving activity. However, there are some unclear points that do not support the conclusion that the recombin...
متن کاملUnderstanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
Given its availability, low prices, and high degree of reduction, glycerol has become an ideal feedstock for the production of reduced compounds. The anaerobic fermentation of glycerol by Escherichia coli could be an excellent platform for this purpose but it requires expensive nutrients such as tryptone and yeast extract. In this work, microaerobic conditions were used as a means of eliminatin...
متن کاملMetabolic engineering to enhance bacterial hydrogen production
Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K-12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 11 شماره
صفحات -
تاریخ انتشار 2005